Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(\pm)-1-Tetralone-3-carboxylic acid and (\pm)-1-tetralone-2-acetic acid: hydrogen bonding in two γ-keto acids

Alan Barcon, Andrew P. J. Brunskill, Roger A. Lalancette,* Hugh W. Thompson and Allan J. Miller

Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
Correspondence e-mail: rogerlal@andromeda.rutgers.edu

Received 6 November 2000
Accepted 20 December 2000
The crystal structure of (\pm)-4-oxo-1,2,3,4-tetrahydronaph-thalene-2-carboxylic acid $\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}\right)$ involves projection of the carboxyl group nearly orthogonal to the aromatic plane and hydrogen bonding of the acid groups by centrosymmetric pairing across the a edge and the center of the chosen cell $[\mathrm{O} \cdots \mathrm{O}=2.705(2) \AA]$. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ close contacts to translationally related molecules are found for both the ketone $(2.55 \AA)$ and the acid $(2.67 \AA)$. In (\pm)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-acetic acid $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}\right)$, the aggregation involves centrosymmetric carboxyl dimers mutually hydrogen bonded across the $b c$ face and the a edge of the chosen cell $[\mathrm{O} \cdots \mathrm{O}=2.674$ (2) \AA]. A $2.60 \AA$ close $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ contact is found to the carboxyl group of centrosymmetrically related molecule.

Comment

Beyond the dimerization that dominates the hydrogen bonding in functionally unadorned carboxylic acids lies a range of alternative hydrogen-bonding modes that expands as other functional groups are added. Our continuing study of the crystal structures of keto acids explores the molecular characteristics that control their five known hydrogen-bonding modes (Lalancette, Thompson \& Brunskill, 1999). Two of these, including carboxyl dimerization, lack ketone involvement, but acid-to-ketone catemers constitute a sizable minority of cases, while intramolecular hydrogen bonds and acid-to-ketone dimers are rarely observed. In addition, more than a dozen hydrates are known, having more complex hydrogen-bonding patterns.

We report here the structures and hydrogen-bonding behavior of the two tetralone acids of the title. The category of γ-keto acids is especially rich in hydrogen-bonding types, embracing internal hydrogen bonds and catemers of the helical, translational and glide types, as well as dimers and hydrated patterns. The two compounds presented here are part of a series of indanone and tetralone acids we have examined, in which the indanone species have been found to be
predominantly catemers (Lalancette et al., 1997; Lalancette, Brunskill \& Thompson, 1999; Thompson, Brunskill \& Lalancette, 1998; Thompson, Lalancette \& Brunskill, 1998).

Fig. 1 shows the asymmetric unit of $(\pm)-1$-tetralone-3carboxylic acid $[(\pm)$-4-oxo-1,2,3,4-tetrahydronaphthalene-2carboxylic acid, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}$, (I)] with the atomic numbering. The ketone ring adopts a conformation resembling a folded envelope, in which the dihedral angle for $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ versus the tetralone ring system excluding C2 is $49.92(14)^{\circ}$, placing C 2 above the average aromatic plane by 0.703 (3) \AA, while C3 lies 0.059 (3) \AA above it. This allows the ketone to lie nearly coplanar with the aromatic ring [torsion angle $\mathrm{O} 1-\mathrm{C} 4-$ $\left.\mathrm{C} 4 A-\mathrm{C} 5=-3.4(3)^{\circ}\right]$, while the carboxyl group is positioned pseudo-axially and turned so that it is nearly coplanar with the $\mathrm{C} 2-\mathrm{C} 3$ bond, with its carbonyl toward the ketone. The torsion angle $\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 2-\mathrm{C} 3$ is $-1.7(3)^{\circ}$ and the vector angle for $\mathrm{C} 2-\mathrm{C} 9$ versus the tetralone ring system without C2 is $80.22(8)^{\circ}$. The ketone-carboxyl dihedral angle (C3/C4/ C4A/O1 versus $\mathrm{C} 9 / \mathrm{O} 2 / \mathrm{O} 3$) is 82.3 (2) ${ }^{\circ}$.

(I)

(II)

This angular carboxyl conformation seems surprising, but its resemblance to the usual axial arrangements is both superficial and deceptive. Even apart from the flattening of the ketone ring, the H atoms responsible for unfavorable 1,3diaxial interactions in cyclohexane systems are absent in (I). The gauche arrangements created along the $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 2-$ C3 bonds by the pseudo-axial carboxyl group are $\mathrm{C} 9-\mathrm{C} 2-$ $\mathrm{C} 1-\mathrm{C} 8 A$ and $\mathrm{C} 9-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$, but the terminal atoms, C 9 , $\mathrm{C} 8 A$ and C4, are all trigonal. These atoms therefore lack much of the three-dimensional character that creates the steric strain in alkylcyclohexanes, a situation also seen with haloand cyano-substituted cyclohexanes (Hirsch, 1967). The result is that the pseudo-axial and pseudo-equatorial conformations for (I) are energetically closer than in systems fully populated by tetrahedral C atoms. Although semi-empirical molecular

Figure 1
The asymmetric unit of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.
(AM1) modeling (Wavefunction, 1995; Dewar et al., 1985) indicated the pseudo-equatorial conformation to be slightly more stable, any such advantage is obviously overbalanced by other forces in the crystal.

The disorder commonly detected in carboxyl dimers as an averaging of $\mathrm{C}-\mathrm{O}$ distances and $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles (Leiserowitz, 1976) is not seen in (I), where these values are 1.214 (3)/ 1.313 (3) \AA and 123.3 (2)/114.3 (2) ${ }^{\circ}$, respectively. Values cited as typical for highly ordered dimeric carboxyls are 1.21/1.31 \AA and $123 / 112^{\circ}$, respectively (Borthwick, 1980).

Figure 2
A partial packing diagram for (I), with extracellular molecules, showing acid dimers centered on the a edge and at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$. Close contacts found between O 1 and $\mathrm{H} 7(2.55 \AA)$, and between O 2 and $\mathrm{H} 1 B(2.67 \AA)$ of separate translationally related molecules are indicated by dotted lines. Displacement ellipsoids are drawn at the 20% probability level and carbon-bound H atoms have been removed for clarity.

Figure 3
The asymmetric unit of (II), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.

Fig. 2 shows the packing arrangement for (I), involving centrosymmetric dimers centered on the a edge of the chosen cell and at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}[\mathrm{O} \cdots \mathrm{O}=2.705$ (2) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=$ 173 (3) ${ }^{\circ}$]. Translationally related molecules stack with an interplanar distance of $3.48 \AA$, but the aromatic portions do not stack directly together, and the overlap between stacked aromatic and ketone rings involves only about half of each ring. Close $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ contacts are found to separate translational neighbors between the ketone and H7 ($2.55 \AA$), and between the acid and $\mathrm{H} 1 B(2.67 \AA)$. These distances lie within the $2.7 \AA$ range we often employ for non-bonded $\mathrm{H} \cdots \mathrm{O}$ packing interactions (Steiner, 1997). Using data compiled from a large number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts, Steiner \& Desiraju (1998) find significant statistical directionality even as far out as $3.0 \AA$ and conclude that these are legitimately viewed as 'weak hydrogen bonds', with a greater contribution to packing forces than simple van der Waals attractions.

Fig. 3 shows the asymmetric unit of (\pm)-1-tetralone-2-acetic acid [(\pm)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-acetic acid, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$, (II)] with the atomic numbering. The flexible ketone ring adopts a significantly more twisted conformation than in (I), placing C2 0.358 (3) \AA A above the average aromatic plane, while C3 lies 0.440 (3) \AA below it. The ketone is significantly less coplanar with the aromatic ring than in the case of (I) [torsion angle $\left.\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8 A-\mathrm{C} 8=-14.3(3)^{\circ}\right]$. Free rotation is possible about only two bonds, and the

Figure 4
A partial packing diagram for (II), with extracellular molecules, showing acid dimers centered on the a edge and the $b c$ face. A reciprocal close contact found between the acid carbonyl and the H6 atom of a centrosymmetrically related neighbor is indicated by dotted lines. Displacement ellipsoids are set at the 20% probability level and carbon-bound H atoms have been removed for clarity.
conformational arrangement at $\mathrm{C} 2-\mathrm{C} 9$ is staggered, with C 9 forming a pseudo-equatorial bond so that the torsion angle $\mathrm{C} 9-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ is $171.3(2)^{\circ}$. The $\mathrm{C} 9-\mathrm{C} 10$ bond is rotated so that the $\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 2$ torsion angle is $23.4(3)^{\circ}$, placing the two carboxyl O atoms at similar distances from the ketone O atom $[\mathrm{O} 1 \cdots \mathrm{O} 2=3.173(2) \AA$ and $\mathrm{O} 1 \cdots \mathrm{O} 3=$ 3.670 (2) Å]. The ketone-carboxyl dihedral angle ($\mathrm{C} 2 / \mathrm{C} 1$ / C8A/O1 versus $\mathrm{C} 10 / \mathrm{O} 2 / \mathrm{O} 3$) is $79.1(1)^{\circ}$. No carboxyl disorder was detected in (II), where the $\mathrm{C}-\mathrm{O}$ distances are 1.216 (2)/ 1.311 (2) \AA and the $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles are 123.7 (2)/114.1 (2) ${ }^{\circ}$.

Fig. 4 shows the packing arrangement for (II), involving centrosymmetric dimers centered on the $b c$ face and the a edge of the chosen cell $[\mathrm{O} \cdots \mathrm{O}=2.674$ (2) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=$ 176°]. Centrosymmetrically related molecules stack with their aromatic rings significantly overlapped, at an interplanar distance of $3.65 \AA$, and a $2.60 \AA$ close $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ contact is found between the acid and H 6 of a centrosymmetrically related neighbor (to which it is not hydrogen bonded).

Compound (I) in KBr has a single IR peak at $1691 \mathrm{~cm}^{-1}$ for both $\mathrm{C}=\mathrm{O}$ groups. In CHCl_{3} solution, where dimers are known to predominate, the presence of two peaks, at 1687 and $1713 \mathrm{~cm}^{-1}$, suggests the presence in solution of a different (or more than one) conformation. The KBr spectrum of (II) has discrete $\mathrm{C}=\mathrm{O}$ absorptions at 1692 (ketone) and $1704 \mathrm{~cm}^{-1}$ (acid). In CHCl_{3} solution, only slight shifts occur, and these peaks appear at 1683 and $1712 \mathrm{~cm}^{-1}$, with a typical carboxyldilution shoulder ca $1740 \mathrm{~cm}^{-1}$.

Experimental

Compound (I) was prepared from the Stobbe-condensation product of benzaldehyde with diethyl succinate by sequential saponification, hydrogenation (Pd / C) and acid-catalyzed cyclization (Horning \& Walker, 1952). Crystals of (I) (m.p. 420 K) were obtained from ethyl acetate/cyclohexane. For compound (II), 2-carbomethoxy-1-tetralone was alkylated with ethyl bromoacetate and the product was hydrolyzed and decarboxylated under acidic conditions, as described by Bachman \& Johnson (1949). After sublimation of the crude product, crystals of (II) (m.p. 383 K) were obtained from diethyl ether.

Compound (I)

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}$
$M_{r}=190.19$
Monoclinic, $P 2_{1} / c$
$a=6.2645(7) \AA$ 。
$b=5.4440(12) \AA$
$c=26.170(3) \AA$
$\beta=91.339(11)^{\circ}$
$V=892.2(2) \AA^{3}$
$Z=4$

Data collection

Siemens $P 4$ diffractometer
$2 \theta / \theta$ scans
Absorption correction: numerical (XPREP; Sheldrick, 1997)
$T_{\text {min }}=0.952, T_{\text {max }}=0.990$
2499 measured reflections
1582 independent reflections 1118 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.106$
$S=1.06$
1582 reflections
141 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0365 P)^{2}\right. \\
& \quad+0.2370 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.02 \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.007 (2)

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{O} 2-\mathrm{C} 9$	$1.214(3)$	$\mathrm{O} 3-\mathrm{C} 9$	$1.313(3)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 2$	$123.3(2)$	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 2$	$114.3(2)$

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {i }}$	0.94 (3)	1.77 (3)	2.705 (2)	173 (3)
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.97	2.67	3.471 (3)	140
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1^{\text {iii }}$	0.93	2.55	3.368 (3)	147

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x-1, y, z$; (iii) $x-1,1+y, z$.

Compound (II)

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \\
& M_{r}=204.22 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=8.0008(10) \AA \\
& b=10.579(2) \AA \\
& c=12.6789(13) \AA \\
& \beta=105.616(8)^{\circ} \AA \\
& V=1033.5(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.312 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 21
\quad reflections
$\theta=4.6-15.0^{\circ}$
$\mu=0.094 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colorless
$0.60 \times 0.34 \times 0.24 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer
2 θ / θ scans
Absorption correction: numerical
(XPREP; Sheldrick, 1997)
$T_{\text {min }}=0.981, T_{\text {max }}=0.997$
2503 measured reflections
1822 independent reflections
1305 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\max }=24.99^{\circ}$
$h=-9 \rightarrow 9$
$k=0 \rightarrow 12$
$l=0 \rightarrow 15$
3 standard reflections
\quad every 97 reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.109$
$S=1.04$
1822 reflections
149 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 3
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$) for (II).

$\mathrm{O} 2-\mathrm{C} 10$	$1.216(2)$	$\mathrm{O} 3-\mathrm{C} 10$	$1.311(2)$
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$123.69(18)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 9$	$114.05(18)$

Table 4
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.90	1.77	$2.674(2)$	176
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.60	$3.418(3)$	147
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 9 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.97	2.71	$3.336(3)$	122

Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $2-x, 1-y,-z$; (iii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.

For both (I) and (II), all H atoms were found in electron-density difference maps but were placed in calculated positions and allowed to refine as riding models, with $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA$ for CH_{2}, $0.98 \AA$ for methine and $0.93 \AA$ for aromatic C atoms. All $U_{\text {iso }}$ values for H atoms were refined. The carboxyl H atoms was also found in difference maps, but their positional and isotropic displacement parameters were allowed to fully refine.

For both compounds, data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1312). Services for accessing these data are described at the back of the journal.

References

Bachman, W. E. \& Johnson, G. D. (1949). J. Am. Chem. Soc. 71, 3463-3468.
Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.
Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. \& Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.
Hirsch, J. A. (1967). Table of Conformational Energies, in Topics in Stereochemistry, Vol. 1, edited by N. L. Allinger \& E. L. Eliel, pp. 199-222. New York: Wiley-Interscience.
Horning, E. C. \& Walker, G. N. (1952). J. Am. Chem. Soc. 74, 5147-5151.
Lalancette, R. A., Brunskill, A. P. J. \& Thompson, H. W. (1997). Acta Cryst. C53, 1838-1842.
Lalancette, R. A., Brunskill, A. P. J. \& Thompson, H. W. (1999). Acta Cryst. C55, 568-572.
Lalancette, R. A., Thompson, H. W. \& Brunskill, A. P. J. (1999). Acta Cryst. C55, 1908-1911.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Steiner, T. (1997). Chem. Commun. pp. 727-734.
Steiner, T. \& Desiraju, G. R. (1998). Chem. Commun. pp. 891-892.
Thompson, H. W., Brunskill, A. P. J. \& Lalancette, R. A. (1998). Acta Cryst. C54, 829-831.
Thompson, H. W., Lalancette, R. A. \& Brunskill, A. P. J. (1998). Acta Cryst. C54, 1180-1182.
Wavefunction (1995). SPARTAN. Version 4.0. Wavefunction Inc., 18401 Von Karman Avenue, Irvine, CA 92715, USA.

